Effect of SiO₂ content on the ionic conductivity of Ce_{0.8}Gd_{0.2}O_{2- δ} ceramics

T. S. ZHANG,* J. MA, L. B. KONG

School of Materials Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 E-mail: tszhang@ntu.edu.sg

S. H. CHAN

School of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798

Ceria-based solid solutions, for example, 20% GdO_{1.5}doped ceria (Ce_{0.8}Gd_{0.2}O_{2- δ}), have been considered as most promising candidate electrolytes for intermediatetemperature (500 to 700 °C) fuel cells [1–3]. However, it should be noted that the grain boundary (GB) conduction becomes important, especially in the intermediatetemperature range in Gd-doped ceria. Although the deleterious GB behavior which arises from SiO₂ impurity has been recognized for over ten years in ceriabased solid solution, there is still a lack of clarity as to how the level of SiO₂ affects ionic conductivity, especially in Ce_{0.8}Gd_{0.2}O_{2- δ} ceramics [4, 5]. In this short communication, we report the electrical properties of the Ce_{0.8}Gd_{0.2}O_{2- δ} ceramics with 30, 200, and 3000 ppm SiO₂.

High-purity CeO₂ and Gd₂O₃ powders (Yew Tree House, Tilley, Wem Shropshire SY4 5HE, England) were used as the starting materials. The levels of the main impurities, SiO₂, CaO, and other rare earth oxides, in the commercial CeO2 and Gd2O3 powders are listed in Table I. (1) The $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ powder with ~ 30 ppm SiO₂ was first prepared by merely mixing the two raw oxides for over 24 hr in ethanol medium, using a ball milling process, with polypropylene jars and yttria-stabilized zirconia balls. (2) To obtain the Ce_{0.8}Gd_{0.2}O_{2- δ} powders with 200 and 3000 ppm SiO₂, 170 and 2970 ppm SiO₂, were added into the above mixed powder via a wet chemical method using tetraethyl orthosilicate (TEOS) as the starting material. The powder and TEOS were thoroughly mixed. The slurries obtained were then dried and thermally decomposed at 700 °C for 1 hr in air. The powders were pressed into pellets of 10 mm diameter, at \sim 100 MPa. The green densities of the pellets were \sim 58% of theoretical density. The pellets were finally sintered at 1600 °C for 5 hr in air, at a heating and cooling rate of 10 °C/min. To prevent any contamination during sintering, the pellets were all supported by platinum plates.

Phase composition was examined by X-ray diffraction (XRD) (Rigaku, Dmax-2200, Tokyo, Japan). After thermally etching, well-polished surfaces of the sintered samples were observed by scanning electron microscopy (SEM) (JSM-5410, Jeol, Japan). The densities of the sintered pellets were measured, via the Archimedes method, in a water bath. After being polished with emery paper, the sintered pellets were coated on both sides by silver pastes that were fired at 850 °C. At the same time, silver wires were fixed on to the silver paste serving as lead wires. The ionic conductivities of the sintered samples were measured using a two-probe impedance spectroscopy (Solartron 1260, UK), over 250 to 750 °C and from 1 to 10^7 Hz.

XRD results indicate that the Ce_{0.8}Gd_{0.2}O_{2- δ} ceramics with different levels of SiO₂, sintered at 1600 °C for 5 hr, are of single phase with fluorite structure like pure CeO₂. No other phases are observed even in the sample with 3000 ppm SiO₂. SEM observation suggests that the samples with 30 and 200 ppm SiO₂ exhibit a very similar microstructure, with ~96.4% relative density and a mean grain size of ~2.3 μ m. However, the addition of more SiO₂ (e.g., 3000 ppm) leads to a slight decrease in both grain size (~1.7 μ m) and sintered density (~94.8% relative density), which may be attributed to the pinning effect of the second phase (i.e., SiO₂).

The impedance characteristics of the $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ ceramics, with different levels of SiO2, are similar to those of other polycrystalline materials such as yttriastabilized zirconia, as well-documented in the literature [6, 7]. Fig. 1 shows the typical impedance spectra of the Si-containing $Ce_{0.8}Gd_{0.2}O_{2-\delta}$, measured at 350 °C in air. The contributions of the grain interior (GI), grain boundary, and electrode polarization behavior, can be clearly identified from this figure. It is found that the GB impedance increases as the SiO₂ content increases. Specifically, the $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ with 3000 ppm SiO₂ has a very large GB arc, indicating that SiO₂ impurity is extremely detrimental to the GB conduction of ceriabased electrolytes. Besides the effect on the GB conductivity, SiO₂ also has a slight influence on the GI conductivity. It is found that the GI conductivity decreases consistently as SiO₂ content increases, as clearly shown in the inset of this figure. The dissolution of SiO₂ in $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ crystallites can be considered to be responsible for this decreased GI conductivity. At high temperatures, a small quantity of SiO₂ can enter into the $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ crystallites at either substitutional

^{*}Author to whom all correspondence should be addressed.

TABLE I Main impurities in raw CeO_2 and Gd_2O_3 powders

Compound	Level (wt%)		
CeO ₂	>99.98		
Other rare earth oxides	< 0.0135		
CaO	< 0.005		
SiO ₂	<0.0025 (25 ppm)		
Gd ₂ O ₃	>99.99		
Other rare earth oxides	< 0.0059		
CaO	< 0.005		
SiO ₂	<0.0032 (32 ppm)		

Figure 1 Impedance spectra of Ce_{0.8}Gd_{0.2}O_{2- δ} ceramics with 30 ppm (\bullet), 200 ppm (\circ), and 3000 ppm SiO₂ (\Box), measured at 350 °C in air. The GB and GI, respectively stand for the grain-boundary and grain-interior effects. Inset is the GI conductivity at high frequencies, showing the effect of SiO₂ content on the GI conductivity.

or interstitial sites:

at substitutional site: $SiO_2 \xrightarrow{CeO_2} Si_{Ce} + 2O_o$

(1)

and

at interstitial site:
$$SiO_2 + 2V_o^{\bullet\bullet} \xrightarrow{CeO_2} Si_i^{\bullet\bullet\bullet\bullet} + 2O_o$$
(2)

Although the substitutional dissolution of SiO₂ into $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ produces no charge carriers as described in Equation 1, a large lattice distortion usually leads to a slow mobility of oxygen vacancies, as well as a high association enthalpy of complex defects. Similar results have been reported in Zr-doped $Ce_{0.75}Gd_{0.15}O_{2-\delta}[8]$ and in SiO₂-doped YSZ [9]. By referring to the sizes of Si⁴⁺ ion (0.4 Å) and Ce⁴⁺ ion (0.97 Å), it is likely, however, that the interstitial dissolution by filling some oxygen vacancies is more favorable. This results in a decrease in concentration of oxygen vacancies, thus leading to a reduced GI conductivity.

Fig. 2 shows the effect of SiO_2 content on the contribution of the GB resistance to the GI value. As expected, for each sample, the GB resistance decreases

Figure 2 The relative contribution of the GB resistance to the total value of $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ ceramics with 30 ppm (•), 200 ppm (o), and 3000 ppm SiO₂ (\Box).

as temperature increases. At a particular temperature, the contribution of the GB resistance to the total value relies on the levels of SiO₂. For instance, at 400 °C, the GB resistance accounts for 12.0, 53.2, and 83.4% of the total value in the $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ with SiO₂ contents of 30, 200, and 3000 ppm, respectively. It is also noted that in the $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ with 30 ppm SiO₂, the GB resistance plays a minor role in the total conduction even at low measurement temperatures. In materials of high purity (<50 ppm SiO₂), the GB behavior is usually attributed to intrinsic effect-spacecharge layer, since the blocking effect of the siliceous phase is negligible [10, 11]. During sintering, effectively negatively charged Gd'_{Ce} species segregate to the grain boundaries, in which positively charged $V_0^{\bullet\bullet}$ are depleted.

However, the blocking effect of the grain boundaries due to the thin siliceous films should be of great concern in high-impurity materials (\gg 50 ppm SiO₂), although space-charge layer may still take action. During sintering a thin amorphous Si-containing film would be formed at the grain boundaries, through which the movement of oxygen ions is blocked, thus leading to a low GB conductivity. However, it remains unclear whether the siliceous films are continuous or enclose the grains. In this respect, two models (i.e., blocking model and constriction model) have been established to explain the GB effect [12, 13]. Although both models have found experimental supports, more and more evidence supports the "constriction model". Our preliminary results have revealed that no continuous GB phase is observed even in the sample with 3000 ppm SiO₂, and the Si-containing phase usually concentrates in the three-grain junctions. This suggests that oxygen ions cross the grain boundaries only through some "clean" grain to grain contacts, whose fraction is determined by the amount of the siliceous phase.

TABLE II Ionic conductivity^a and activation energy^b of $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ ceramics with different levels of SiO_2

Composition	$E_{\rm t}~({\rm eV})$	$E_{\rm gb}~({\rm eV})$	$E_{\rm gi}~({\rm eV})$	$\sigma_{\rm t} (\Omega {\rm m})^{-1}$	$\sigma_{\rm gb}~(\Omega {\rm m})^{-1}$	$\sigma_{\rm gi}(\Omega {\rm m})^{-1}$
$\begin{array}{l} Ce_{0.8}Gd_{0.2}O_{2-\delta} + 30 \text{ ppm} \\ Ce_{0.8}Gd_{0.2}O_{2-\delta} + 200 \text{ ppm} \\ Ce_{0.8}Gd_{0.2}O_{2-\delta} + 3000 \text{ ppm} \end{array}$	0.826 0.891 0.945	0.920 0.992 0.989	0.768 0.781 0.790	1.65 1.28 0.652	0.201 0.029 6.66×10^{-3}	$\begin{array}{c} 4.14 \times 10^{-2} \\ 4.10 \times 10^{-2} \\ 3.96 \times 10^{-2} \end{array}$

^aThe GI (σ_{ei}) and GB (σ_{eb}) conductivities, and the total (σ_t) conductivity were measured at 350 and 600 °C, respectively.

^bThe activation energies for the GI (E_{gi}) and GB (E_{gb}) conductivities, and the total (E_t) conductivity were measured in the temperature range of 250 to 450 °C and 250 to 700 °C, respectively.

Figure 3 Arrhenius plot of the total conductivity of $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ ceramics with 30 ppm (\bullet), 200 ppm (\circ), and 3000 ppm SiO₂ (\Box), measured at 250 to 700 °C in air.

The Arrhenius plot of the total conductivity of $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ with different levels of SiO_2 is shown in Fig. 3. It can be seen that the sample with 30 ppm SiO_2 has a much higher total conductivity in the temperature range of 250 to 750 °C. By examining the results in Figs 1 and 2, we see that a lower total conductivity of the $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ with 200 ppm or 3000 ppm SiO_2 results mainly from the the deteriorated GB conduction since SiO_2 content has a slight effect on the GI conductivity. Table II summarizesionic conductivity and

activation energy of the Ce_{0.8}Gd_{0.2}O_{2- δ} with different levels of SiO₂. The values regarding the Ce_{0.8}Gd_{0.2}O_{2- δ} with 200 ppm SiO₂ should be of great interest since the SiO₂ content of 200 ppm is a common impurity level in the commercial raw powders [14]. Moreover, due to the high-purity sample (~30 ppm SiO₂) used in the present study, some of the electrical properties measured may be taken as the ultimate or intrinsic values for the Ce_{0.8}Gd_{0.2}O_{2- δ} ceramics [15].

References

- 1. B. C. H. STEELE, Solid State Ionics 129 (2000) 95.
- 2. J. B. GOODENOUGH, Annu. Rev. Mater. Res. 33 (2003) 91.
- 3. N. P. BRANDON, S. SKINNER and B. C. H. STEELE, *ibid.* 33 (2003) 183.
- 4. J. TANAKA, J. Amer. Ceram. Soc. 70 (1987) 637.
- 5. R. GERHARDT and A. S. NOWICK, *ibid.* 69 (1986) 647.
- 6. J. E. BAUERLE, J. Phys. Chem. Solid 30 (1969) 2651.
- J. R. MACDONALD, "Impedance Spectroscopy-Emphasizing Solid Materials and Systems" (A Wiley-Interscience Publication, John, Wiley & Sons, 1987).
- T. S. ZHANG, H. T. HUANG, Z. Q. ZENG, P. HING and J. A. KILNER, J. Mater. Sci. Lett. 21 (2002) 1167.
- 9. M. C. MARTIN and M. L. MECARTNEY, Solid State Ionics 161 (2003) 67.
- 10. J. MAIER and B. BUNSENGES, Phys. Chem. 90 (1986) 26.
- 11. X. GUO, Solid State Ionics 96 (1997) 247.
- 12. E. SCHOULER, G. GIROND and M. KLEITZ, J. Chem. Phys. **70** (1973) 1309.
- 13. T. VAN DIJK and A. J. BURGGRAAF, *Phys. Stat. Sol.* (a) **63** (1981) 229.
- 14. T. S. ZHANG, J. MA, S. H. CHAN, P. HING and J. A. KILNER, *Solid State Sciences*, in press.
- M. AOKI, Y. M. CHIANG, I. KOSACKI, L. J. R. LEE, H. TULLER and Y. LIU, *J. Amer. Ceram. Soc.* **79** (1996) 1169.

Received 14 November 2003 and accepted 29 April 2004